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1. I NT R ODUC T I ON 

Minkowski space, an arena of Einstein's special theory of 
relativity, represents a mathematical model of the spacetime. 
There are several topologies defined on it. The well known 
Euclidean topology on the Minkowski space is a natural 
topology but it was supposed to be an inappropriate choice 
because it does not incorporate the causal structure of 
spacetime and its homeomorphism group is too large to be of 
any physical significance. In 1967, Zeeman [10] introduced 
non-Euclidean topologies on Minkowski space which include 
fine topology, t-topology, s-topology, space topology, time 
topology etc. and studied fine topology. Zeeman obtained that 
the homeomorphism group of Minkowski space with the fine 
topology is isomorphic to the group generated by the Lorentz 
group, translations and dilatations. Nanda [8, 9] studied the 
homeomorphism group of Minkowski space with t, s and 
space topologies. In 1976, Göbel [3] generalized the fine 
topology on manifolds and studied its homeomorphism group 
and Hawking et.al. [5] proposed and studied the path topology 
on strongly causal spacetime. Further, Göbel [4] explored a 
physically relevant topology on spacetime and proved 
Zeeman's [10] conjecture for the homeomorphism group of 
Minkowski space with time topology. In 2009, Agrawal and 
Shrivastava [1] studied compact sets of Minkowski space with 
the t-topology which is same as the path topology on 
Minkowski space. Low [6], in 2010, proved the non-simple 
connectedness of spacetime manifold with the path topology. 
Further, in the same year Agrawal and Shrivastava [2] 
provided an alternative proof for the non-simple 
connectedness of Minkowski space with the path topology. 
For the Euclidean space, the compact and connected subspaces 
are well studied. The present paper is focussed on the study of 
topological notions, namely compactness and connectedness, 
for some sets in Minkowski space with the time topology.  

2. NOT A T I ON A ND PR E L I M I NAR I E S 

Let the set of natural and real numbers be denoted by N and R 
respectively. For 𝑛𝑛 ∈ 𝑁𝑁 and 𝑛𝑛 > 1, the n-dimensional real 
vector space Rn with the bilinear form 𝑔𝑔: 𝑅𝑅𝑛𝑛  × 𝑅𝑅𝑛𝑛 → 𝑅𝑅 such 
that 𝑔𝑔 is symmetric, nondegenerate and there exists a basis 
{𝑒𝑒0, 𝑒𝑒1 … 𝑒𝑒𝑛𝑛−1} for 𝑅𝑅𝑛𝑛  with 𝑔𝑔�𝑒𝑒𝑖𝑖 , 𝑒𝑒𝑗𝑗 � = 1 if 𝑖𝑖 = 𝑗𝑗 = 0, -1 if 
𝑖𝑖 = 𝑗𝑗 = 1, … ,𝑛𝑛 − 1 and 0 otherwise is called the n-
dimensional Minkowski space, denoted by Mn and the bilinear 
form 𝑔𝑔 is called the Lorentz inner product. Also g induces an 
indefinite characteristic quadratic form Q on Mn defined as 
𝑄𝑄(𝑥𝑥)  =  𝑔𝑔(𝑥𝑥, 𝑥𝑥), 𝑥𝑥 ∈  𝑀𝑀𝑛𝑛 . According as 𝑄𝑄(𝑥𝑥) is positive, 
zero, or negative, 𝑥𝑥 ∈ 𝑀𝑀𝑛𝑛  is called timelike, lightlike or 
spacelike. The sets 𝐶𝐶𝑇𝑇(𝑥𝑥) = {𝑦𝑦 ∈ 𝑀𝑀𝑛𝑛 : 𝑦𝑦 =  𝑥𝑥 𝑜𝑜𝑜𝑜 𝑄𝑄(𝑦𝑦 − 𝑥𝑥) >
 0}, 𝐶𝐶𝐿𝐿(𝑥𝑥) = {𝑦𝑦 ∈ 𝑀𝑀𝑛𝑛 : 𝑦𝑦 =  𝑥𝑥 𝑜𝑜𝑜𝑜 𝑄𝑄(𝑦𝑦 − 𝑥𝑥) =  0} and 
𝐶𝐶𝑆𝑆(𝑥𝑥) = {𝑦𝑦 ∈ 𝑀𝑀𝑛𝑛 : 𝑦𝑦 =  𝑥𝑥 𝑜𝑜𝑜𝑜 𝑄𝑄(𝑦𝑦 − 𝑥𝑥) <  0} are respectively 
called the time cone, light cone and space cone at x. Let the 
coordinates of 𝑥𝑥 ∈ 𝑀𝑀𝑛𝑛  with respect to the basis 
{𝑒𝑒0, 𝑒𝑒1 … 𝑒𝑒𝑛𝑛−1} be denoted by 𝑥𝑥𝑖𝑖 , where 𝑖𝑖 = 0, 1, … ,𝑛𝑛 − 1, 𝑥𝑥0 
is the time coordinate and 𝑥𝑥1, 𝑥𝑥2, … 𝑥𝑥𝑛𝑛−1 are the space 
coordinates. Then the sets 𝐶𝐶𝑇𝑇+(𝑥𝑥) =  {𝑦𝑦 ∈  𝐶𝐶𝑇𝑇(𝑥𝑥): 𝑦𝑦0 >
 𝑥𝑥0} and 𝐶𝐶𝑇𝑇−(𝑥𝑥) = {𝑦𝑦 ∈  𝐶𝐶𝑇𝑇(𝑥𝑥): 𝑦𝑦0 < 𝑥𝑥0} are called the 
future and past timecones at 𝑥𝑥 ∈ 𝑀𝑀𝑛𝑛 . The elements of 𝐶𝐶𝑇𝑇+(𝑥𝑥) 
and 𝐶𝐶𝑇𝑇−(𝑥𝑥) are called future and past directed timelike vectors 
respectively. A straight line parallel to a timelike vector is 
called a timelike line. Similarly, the notions of lightlike line 
and spacelike line in 𝑀𝑀𝑛𝑛  are defined [7].  

Let 𝑥𝑥 ∈ 𝑀𝑀𝑛𝑛  and 𝐵𝐵 ≡ {𝑁𝑁𝜀𝜀𝐸𝐸(𝑥𝑥): 𝜀𝜀 > 0}. Then the topology 
generated by the basis B is called the Euclidean topology on 
𝑀𝑀𝑛𝑛  and the topology generated by the local base 𝑁𝑁𝜀𝜀𝑡𝑡(𝑥𝑥)  =
 𝑁𝑁𝜀𝜀𝐸𝐸(𝑥𝑥) ∩ 𝐶𝐶𝑇𝑇(𝑥𝑥) is called the t-topology on 𝑀𝑀𝑛𝑛 . The t-
topology is finer than the Euclidean topology [1]. 

Further, the time topology on 𝑀𝑀𝑛𝑛  is the finest topology that 
induces Euclidean topology on every timelike line [10]. The 
time topology is finer than the t-topology [9]. Let 𝑀𝑀𝐸𝐸

𝑛𝑛 , 𝑀𝑀𝑡𝑡
𝑛𝑛  and 

𝑀𝑀𝑇𝑇
𝑛𝑛  denote the n-dimensional Minkowski space with 

Euclidean topology, t-topology and time topology respectively.  
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3. NON-C OM PA C T  SE T S 

In the present section, compactness of some sets in 𝑀𝑀4 with 
time topology has been studied. 

Proposition 3.1: Let 𝑀𝑀4 be the 4-dimensional Minkowski 
space. Then the following sets are not compact in 𝑀𝑀𝑇𝑇

4: (i) a 
straight line L, (ii) 𝑀𝑀4 (iii) 𝑀𝑀4- {p}, where 𝑝𝑝 ∈ 𝑀𝑀4 and 
(iv) 𝑀𝑀4 - L.  

Proof: (i) Since L is not compact in 𝑀𝑀𝐸𝐸
4 and the time topology 

is finer than the Euclidean topology, L is not compact in 𝑀𝑀𝑇𝑇
4.  

(ii), (iii) and (iv): Proof is similar to that of (i).  

Proposition 3.2: Let 𝑀𝑀4 be the 4-dimensional Minkowski 
space and 𝑆𝑆3 be the unit 3-sphere in 𝑀𝑀4. Then 𝑆𝑆3 is not 
compact in 𝑀𝑀𝑇𝑇

4. 

Proof: Let 𝑝𝑝 ≡  (0,0,0,0) and 𝑧𝑧 ≡  (1,0,0, 0). Then for 𝑘𝑘 ∈  𝑁𝑁 
and for some 𝜀𝜀 > 0, choose a sequence 𝑧𝑧𝑘𝑘 ∈ 𝐶𝐶𝑇𝑇+(𝑝𝑝) ∩ 𝑆𝑆3 
such that 0 < 𝑑𝑑(𝑧𝑧, 𝑧𝑧𝑘𝑘)  <  𝜀𝜀 and 𝑧𝑧𝑖𝑖 ≠ 𝑧𝑧𝑗𝑗 , 
where 𝑑𝑑(𝑧𝑧, 𝑧𝑧𝑘𝑘) denotes the Euclidean distance between 𝑧𝑧 and 
𝑧𝑧𝑘𝑘 , 𝑖𝑖, 𝑗𝑗 ≥ 1 and 𝑖𝑖 ≠ 𝑗𝑗. Then {𝑧𝑧𝑘𝑘}𝑘𝑘∈ 𝑁𝑁 is a Zeno sequence in 
𝑀𝑀𝑡𝑡

4. It is known that a set is compact in 𝑀𝑀𝑡𝑡
4 iff it is compact in 

𝑀𝑀𝐸𝐸
4 and it does not contain the image of a Zeno sequence in 

𝑀𝑀𝑡𝑡
4 [1]. Therefore 𝑆𝑆3 is not compact in 𝑀𝑀𝑡𝑡

4. The time topology 
being finer than t-topology [9], 𝑆𝑆3 is not compact in 𝑀𝑀𝑇𝑇

4.  

4. C ONNE C T E D A ND DI SC ONNE C T E D SE T S 

In the present section, connectedness of some sets in 𝑀𝑀4 with 
time topology has been studied. 

Proposition 4.1: Let 𝑀𝑀2 be the 2-dimensional Minkowski 
space with the time topology and L be a straight line in 𝑀𝑀2. 
Then 𝑀𝑀2 - L is not connected in 𝑀𝑀𝑇𝑇

2. 

Proof: Since 𝑀𝑀𝐸𝐸
2- 𝐿𝐿 is not connected and the time topology is 

finer than the Euclidean topology, 𝑀𝑀2 - L is not connected in 
𝑀𝑀𝑇𝑇

2. 

Proposition 4.2: Let 𝑀𝑀𝑡𝑡
4 be the 4-dimensional Minkowski 

space with the time topology. Then a timelike line is 
connected in 𝑀𝑀𝑡𝑡

4. 

Proof: It follows from the fact that the time topology induces 
Euclidean topology on every timelike straight line.  

Proposition 4.3: Let 𝑀𝑀𝑡𝑡
4 be the 4-dimensional Minkowski 

space with the time topology. Then spacelike and lightlike 
lines are not connected in 𝑀𝑀𝑡𝑡

4. 

Proof: Since the t-topology induces discrete topology on 
every spacelike line and on every lightlike line [1] and time 

topology is finer than the t-topology [9], spacelike and 
lightlike lines are not connected in 𝑀𝑀𝑡𝑡

4.  

Proposition 4.4: Let 𝑀𝑀4 be the 4-dimensional Minkowski 
space and 𝑝𝑝 ∈ 𝑀𝑀4. Then 𝑀𝑀4 -{p} is connected in 𝑀𝑀𝑡𝑡

4. 

Proof: Let 𝛾𝛾𝑎𝑎𝑎𝑎 : 𝐼𝐼 ≡  [0,1]  →  𝑀𝑀4  −  {𝑝𝑝} be defined as 
𝛾𝛾𝑎𝑎𝑎𝑎 (𝑡𝑡)  =  (1 − 𝑡𝑡)𝑎𝑎 + 𝑡𝑡𝑡𝑡, where 𝑡𝑡 ∈  𝐼𝐼 and 𝑎𝑎, 𝑏𝑏 ∈  𝑀𝑀4  −  {𝑝𝑝} 
. Further, let , 𝑧𝑧 ∈  𝑀𝑀4  −  {𝑝𝑝} . Then 𝑧𝑧 − 𝑦𝑦 is a timelike, 
lightlike or a spacelike vector. Case 1. 𝑧𝑧 − 𝑦𝑦 is a timelike 
vector. Then either 𝑝𝑝 ∈ 𝛾𝛾𝑦𝑦𝑦𝑦 (𝐼𝐼) 𝑜𝑜𝑜𝑜 𝑝𝑝∉ 𝛾𝛾𝑦𝑦𝑦𝑦  (𝐼𝐼). If 𝑝𝑝∉ 𝛾𝛾𝑦𝑦𝑦𝑦  (𝐼𝐼), 
[𝛾𝛾𝑦𝑦𝑦𝑦  (𝐼𝐼)]𝐸𝐸  = [𝛾𝛾𝑦𝑦𝑦𝑦  (𝐼𝐼)]𝑇𝑇 and hence 𝛾𝛾𝑦𝑦𝑦𝑦  is a path joining y to z 
else choose 𝑞𝑞 ∈  𝐶𝐶𝑇𝑇(𝑦𝑦) ∩  𝐶𝐶𝑇𝑇(𝑧𝑧) ∩ (𝑀𝑀4 –  𝑇𝑇), where T is a 
timelike line containing p, y and z. Then 𝑞𝑞 − 𝑦𝑦 and 𝑞𝑞 − 𝑧𝑧 are 
timelike vectors and hence the join of 𝛾𝛾𝑦𝑦𝑦𝑦  and 𝛾𝛾𝑞𝑞𝑞𝑞  is a path 
from y to z in 𝑀𝑀4 – {𝑝𝑝}. Case 2. z−𝑦𝑦 is a lightlike or a 
spacelike vector. Choose 𝑤𝑤 ∈  𝐶𝐶𝑇𝑇(𝑦𝑦) ∩  𝐶𝐶𝑇𝑇(𝑧𝑧) ∩ (𝑀𝑀4  −  {𝑝𝑝}. 
Then w-y and 𝑤𝑤 − 𝑧𝑧 are timelike vectors and hence the join of 
𝛾𝛾𝑦𝑦𝑦𝑦  and 𝛾𝛾𝑤𝑤𝑤𝑤 , is a path from y to z in 𝑀𝑀4 – {𝑝𝑝}. This proves that 
𝑀𝑀4 – {𝑝𝑝} is path connected in 𝑀𝑀𝑡𝑡

4. This completes the proof. 

Proposition 4.5: Let 𝑀𝑀4 be the 4-dimensional Minkowski 
space and L be a straight line in 𝑀𝑀4. Then 𝑀𝑀4 − 𝐿𝐿 is 
connected in 𝑀𝑀𝑡𝑡

4. 

Proof: Let 𝛾𝛾𝑎𝑎𝑎𝑎 : 𝐼𝐼 ≡  [0,1]  → 𝑀𝑀4 − 𝐿𝐿 be defined as 𝛾𝛾𝑎𝑎𝑎𝑎 (𝑡𝑡)  =
 (1 − 𝑡𝑡)𝑎𝑎 + 𝑡𝑡𝑡𝑡, where 𝑡𝑡 ∈  𝐼𝐼 and 𝑎𝑎, 𝑏𝑏 ∈ 𝑀𝑀4 − 𝐿𝐿. Further, let 
𝑦𝑦, 𝑧𝑧 ∈ 𝑀𝑀4 − 𝐿𝐿. Then either 𝛾𝛾𝑦𝑦𝑦𝑦 (𝐼𝐼) ∩  𝐿𝐿 = ∅ or 𝛾𝛾𝑦𝑦𝑦𝑦 (𝐼𝐼) ∩  𝐿𝐿 ≠
∅. Case 1. 𝛾𝛾𝑦𝑦𝑦𝑦 (𝐼𝐼) ∩  𝐿𝐿 = ∅. Then 𝑧𝑧 − 𝑦𝑦 is a timelike, lightlike 
or a spacelike vector. If 𝑧𝑧 − 𝑦𝑦 is a timelike vector, then 
[𝛾𝛾𝑦𝑦𝑦𝑦 (𝐼𝐼)]𝐸𝐸  =  [𝛾𝛾𝑦𝑦𝑦𝑦 (𝐼𝐼)]𝑇𝑇 and hence 𝛾𝛾𝑦𝑦𝑦𝑦 is a path joining y to z in 
𝑀𝑀4 − 𝐿𝐿 else choose 𝑞𝑞 ∈  𝐶𝐶𝑇𝑇(𝑦𝑦) ∩  𝐶𝐶𝑇𝑇(𝑧𝑧). Then join of 𝛾𝛾𝑦𝑦𝑦𝑦 and 
𝛾𝛾𝑞𝑞𝑞𝑞  is a path from y to z in 𝑀𝑀4 − 𝐿𝐿. Case 2. 𝛾𝛾𝑦𝑦𝑦𝑦 (𝐼𝐼) ∩  𝐿𝐿 ≠ ∅. 
Choose 𝑞𝑞 ∈  𝐶𝐶𝑇𝑇(𝑦𝑦) ∩  𝐶𝐶𝑇𝑇(𝑧𝑧) ∩ (𝑀𝑀4 –  𝑃𝑃), where P is the 
plane containing L, 𝑥𝑥 and y. Then 𝑞𝑞 − 𝑦𝑦 and 𝑧𝑧 − 𝑞𝑞 are 
timelike vectors and hence join of 𝛾𝛾𝑦𝑦𝑦𝑦  and 𝛾𝛾𝑞𝑞𝑞𝑞  is a path from y 
to z in 𝑀𝑀4 − 𝐿𝐿. This proves that 𝑀𝑀4 − 𝐿𝐿 is path connected and 
hence connected in 𝑀𝑀𝑡𝑡

4.  

Proposition 4.6: Let 𝑀𝑀4 be the 4-dimensional Minkowski 
space and 𝑆𝑆3 be the unit 3-sphere in 𝑀𝑀4. Then 𝑆𝑆3 contains 
more than one isolated points and hence 𝑆𝑆3 is not connected in 
𝑀𝑀𝑡𝑡

4. 

Proof: Let 𝑃𝑃 ≡ 𝑆𝑆3 ∩ 𝐶𝐶𝑇𝑇(0,0,0,0). Then P contains more than 
one points. Now for all 𝑥𝑥 ∈ 𝑃𝑃 and for every 𝜀𝜀 > 0, 𝑁𝑁𝜀𝜀𝑡𝑡(𝑥𝑥) ∩
𝑃𝑃 = {𝑥𝑥}. This proves that 𝑃𝑃 ⊂ 𝑆𝑆3 contains more than one 
isolated points. Hence the result. 

Proposition 4.7: Let 𝑀𝑀4 be the 4-dimensional Minkowski 
space and 𝑆𝑆3 be the unit 3-sphere in 𝑀𝑀4. Then for 𝑥𝑥 ∈  𝑆𝑆3, 
𝑆𝑆3 − {𝑥𝑥} is not homeomorphic to 3-dimensional Euclidean 
space. 
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Proof: As proved in Proposition 4.6, 𝑆𝑆3 − {𝑥𝑥} contains 
isolated points while the 3-dimensional Euclidean space is 
connected. Hence the result.  
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